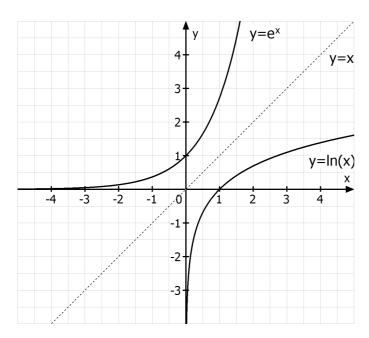
Die In-Funktion

Die e-Funktion ist streng monoton steigend und damit umkehrbar. Die Umkehrfunktion zur e-Funktion ist $f(x) = log_{_{P}} x = lnx$.



Eigenschaften der In-Funktion:

1) Definitionsmenge: $D_f = \mathbb{R}^+$ Wertemenge: $W_f = \mathbb{R}$

2) Nullstellen: N(1/0)

3) Monotonieverhalten: Gf ist streng monoton wachsend in Df

4) Grenzverhalten:

$$\lim_{x\to\infty} (\ln x)$$
 existiert nicht $\ln x\to\infty$ für $x\to\infty$

$$\lim_{x \to \infty} (\ln x) \text{ existiert nicht } \ln x \to \infty \text{ für } x \to \infty$$

$$\lim_{x \to 0} (\ln x) \text{ existiert nicht } \ln x \to -\infty \text{ für } x \to 0$$

5) Ableitung:

$$f(x) = Inx \implies f'(x) = \frac{1}{x}$$

Bemerkungen:

a) Ableitung der allgemeinen Logarithmusfunktion:

$$f(x) = \log_a x = \frac{\ln x}{\ln a}$$
 $\Rightarrow f'(x) = \frac{1}{x \cdot \ln a}$

b)
$$e^{lnx} = x$$
 $lne^x = x \cdot lne = x$

6) Stammfunktion: $\int \frac{1}{x} dx = \ln |x| + C$